Directional characteristics of action potential propagation in cardiac muscle. A model study.
نویسندگان
چکیده
Propagation of an elliptic excitation wave front was studied in a two-dimensional model of a thin sheet of cardiac muscle. The sheet model of 2.5 x 10 mm consisted of a set of 100 parallel cables coupled through a regular array of identical transverse resistors. The membrane dynamics was represented by a modified Beeler-Reuter model. We defined the charging factor (CF) to represent by a single number the proportion of input current used to charge the membrane locally below threshold and showed that CF is inversely correlated with the time constant of the foot of the action potential (tau foot) during propagation on a cable. A safety factor of propagation (SF) was also defined for the upstroke of the action potential, with SF directly correlated with the maximum rate of depolarization (Vmax) and, for cablelike propagation, with propagation velocity. Propagation along the principal longitudinal axis of the elliptic wave front is cablelike but, in comparison with a flat wave front, transverse current flow provides a drag effect that somewhat reduces the propagation velocity, Vmax, SF, and CF. With a longitudinal-to-transverse velocity ratio of 3:1 or more, the wave front propagating along the principal transverse axis is essentially flat and is characterized by multiple collisions between successive pairs of input junctions on a given cable; Vmax, SF, and CF are larger than for longitudinal propagation, but CF is no longer correlated with tau foot. There are transient increases in propagation velocity and Vmax with distance from the stimulation site along both principal axes until stablized values are achieved, and a similar transient decrease in tau foot. Away from the principal axes, the action potential characteristics change progressively along the elliptic wave front.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
The Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملA new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملPropagating Depolarization in Anisotropic Human and Canine Cardiac Muscle: Apparent Directional Differences in Membrane Capacitance A Simplified Model for Selective Directional Effects of Modifying the Sodium Conductance on Vmax> and the Propagation Safety Factor
As yet there is no model or simulation that accounts for the anisotropic difference in the shape of the upstroke and safety factor of propagating cardiac action potentials: fast upstrokes occur with slow transverse propagation and slow upstrokes occur with fast longitudinal propagation. The purpose of this paper is to demonstrate, however, that a simplified cable model based on directional diff...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 69 2 شماره
صفحات -
تاریخ انتشار 1991